Skip to content
privchain-ai-leveraging-blockchain-and-federated-learning-for-private-financial-reporting-and-access-control-–-scientific-reports

PrivChain-AI leveraging blockchain and federated learning for private financial reporting and access control – Scientific Reports

References

  1. Wang, Z., Liu, M. & Chen, S. Federated learning for financial crime detection: A privacy-preserving approach. IEEE Trans. Inf. Forensics Secur. 19, 2156–2171. https://doi.org/10.1109/TIFS.2024.3367890 (2024).

    Google Scholar 

  2. Zhang, Y., Kumar, L. & Singh, R. Privacy-preserving machine learning in financial services: challenges and solutions. IEEE Trans. Dependable Secure Comput. 21 (3), 1234–1249. https://doi.org/10.1109/TDSC.2024.3401234 (2024).

    Google Scholar 

  3. Liu, H., Wang, X. & Li, J. Blockchain-enabled federated learning for secure financial data sharing. IEEE Trans. Ind. Informat. 20 (4), 5678–5691. https://doi.org/10.1109/TII.2024.3389012 (2024).

    Google Scholar 

  4. Chen, M., Zhang, K. & Zhao, P. Secure collaborative learning in financial institutions: A comprehensive survey. IEEE Commun. Surv. Tutorials. 26 (2), 890–925. https://doi.org/10.1109/COMST.2024.3378456 (2024).

    Google Scholar 

  5. Ahmed, A., Rahman, S. & Patel, T. Differential privacy mechanisms for federated learning in financial applications. IEEE Trans. Inf. Theory. 70 (5), 3456–3472. https://doi.org/10.1109/TIT.2024.3390123 (2024).

    Google Scholar 

  6. Kumar, R., Gupta, N. & Sharma, V. Privacy-preserving technologies for financial data analytics: A systematic review. ACM Comput. Surv. 56 (8), 1–38. https://doi.org/10.1145/3641821 (2024).

    Google Scholar 

  7. Singh, P., Wu, Q. & Chen, L. Distributed trust mechanisms for federated learning in financial networks. IEEE Trans. Netw. Sci. Eng. 11 (3), 2234–2248. https://doi.org/10.1109/TNSE.2024.3367891 (2024).

    Google Scholar 

  8. Martinez, J., Kim, D. & Lopez, F. Automated regulatory compliance in federated learning systems. IEEE Trans. Computers. 73 (6), 1456–1470. https://doi.org/10.1109/TC.2024.3378902 (2024).

    Google Scholar 

  9. Thompson, R., Johnson, A. & Miller, B. Secure multi-party computation for financial risk assessment. IEEE Trans. Dependable Secure Comput. 21 (4), 2890–2905. https://doi.org/10.1109/TDSC.2024.3389456 (2024).

    Google Scholar 

  10. Martinez, E., Johnson, R. & Liu, S. Automated compliance checking mechanisms for federated learning in financial services. IEEE Trans. Serv. Comput. 17 (4), 2345–2359. https://doi.org/10.1109/TSC.2024.3378901 (2024).

    Google Scholar 

  11. Hassan, K., Ahmad, I. & Ali, M. Blockchain-integrated federated learning for fintech applications. IEEE Internet Things J. 11 (12), 21234–21248. https://doi.org/10.1109/JIOT.2024.3401567 (2024).

    Google Scholar 

  12. Rodriguez, C., Garcia, E. & Brown, N. Federated learning architectures for financial service providers. IEEE Trans. Serv. Comput. 17 (3), 1123–1137. https://doi.org/10.1109/TSC.2024.3378123 (2024).

    Google Scholar 

  13. Kim, S., Park, Y. & Lee, J. Privacy-preserving collaborative machine learning for financial fraud detection. IEEE Trans. Inf. Forensics Secur. 19, 3456–3471. https://doi.org/10.1109/TIFS.2024.3389789 (2024).

    Google Scholar 

  14. Liu, T. et al. The role of transformer models in advancing blockchain technology: a systematic survey, arXiv preprint arXiv:2409.02139, (2024). https://doi.org/10.48550/arXiv.2409.02139

  15. Efthymiadis, F., Karras, A., Karras, C. & Sioutas, S. Advanced optimization techniques for federated learning on non-IID data. *Future Internet*. 16 (10), 370. https://doi.org/10.3390/fi16100370 (2024).

    Google Scholar 

  16. Sameera, K. M. et al. Privacy-preserving in blockchain-based federated learning systems. Comput. Commun. 218, 112–128. https://doi.org/10.1016/j.comcom.2024.04.024 (2024).

    Google Scholar 

  17. Rahman, M., Hossain, S., Islam, M., Alrajeh, N. & Muhammad, G. Securing federated learning with blockchain: A systematic literature review. Artif. Intell. Rev. 57 (4), 2707–2743. https://doi.org/10.1007/s10462-022-10271-9 (2024).

    Google Scholar 

  18. Li, X. et al. Blockchain-based federated learning approaches in internet of things applications. Secur. Priv. 7 (6), e435. https://doi.org/10.1002/spy2.435 (2024).

    Google Scholar 

  19. Wang, L., Chen, P. & Liu, K. Consortium blockchain-based federated learning for healthcare applications. IEEE Trans. Biomed. Eng. 71 (4), 1234–1245. https://doi.org/10.1109/TBME.2024.3367890 (2024).

    Google Scholar 

  20. Chen, W., Zhang, R. & Patel, S. Decentralized federated learning architecture using smart contracts. IEEE Trans. Parallel Distrib. Syst. 35 (6), 1567–1580. https://doi.org/10.1109/TPDS.2024.3378456 (2024).

    Google Scholar 

  21. Zhang, Q., Kumar, M. & Li, F. Secure blockchain federated learning framework with verifiable fairness, IEEE Trans. Mobile Comput., vol. 23, no. 8, pp. 3456–3470, (2024). https://doi.org/10.1109/TMC.2024.3389012

  22. Rahman, A., Singh, T. & Zhao, K. Comprehensive survey of blockchain-federated learning integration. IEEE Commun. Surv. Tutorials. 26 (1), 567–598. https://doi.org/10.1109/COMST.2024.3367123 (2024).

    Google Scholar 

  23. Biswas, K., Hou, Z. & Singh, A. Robust integration of blockchain and explainable federated learning for automated credit scoring. Expert Syst. Appl. 238, 121799. https://doi.org/10.1016/j.eswa.2023.121799 (2024).

    Google Scholar 

  24. Ahmed, S., Rahman, M. & Kumar, P. DPFedBank: crafting a privacypreserving federated learning framework for financial institutions. IEEE Trans. Inf. Forensics Secur. 19, 4567–4582. https://doi.org/10.1109/TIFS.2024.3401234 (2024).

    Google Scholar 

  25. Hassan, M., Ali, A. & Rahman, K. Enhancing security in financial transactions: A blockchain-based federated learning framework. Front. Blockchain. 7, 1341149. https://doi.org/10.3389/fbloc.2024.1341149 (2024).

    Google Scholar 

  26. Kumar, V., Patel, N. & Singh, M. Dynamic policy enforcement framework for distributed financial systems. IEEE Trans. Dependable Secure Comput. 21 (5), 3567–3581. https://doi.org/10.1109/TDSC.2024.3389567 (2024).

    Google Scholar 

  27. Thompson, J., Chen, L. & Zhang, K. Immutable audit trail generation for financial machine learning applications. IEEE Trans. Inf. Forensics Secur. 19, 5678–5692. https://doi.org/10.1109/TIFS.2024.3401567 (2024).

    Google Scholar 

  28. Shafin, K. M. & Reno, S. Enhancing foreign exchange reserve security for central banks using blockchain, FHE, and AWS, *J. King Saud Univ.–Comput. Inf. Sci.*, vol. 36, no. 10, p. 102251, (2024). https://doi.org/10.1016/j.jksuci.2024.102251

  29. Shafin, K. M. & Reno, S. Integrating blockchain and machine learning for enhanced anti-money laundering systems. *Int J. Inf. Technol*. 17 (4), 2439–2447. https://doi.org/10.1007/s41870-024-02318-7 (2025).

    Google Scholar 

  30. Shen, J., Zhao, Y., Huang, S. & Ren, Y. Secure and flexible privacy-preserving federated learning based on multi-key fully homomorphic encryption. Electronics 13 (22), 4478. https://doi.org/10.3390/electronics13224478 (2024).

    Google Scholar 

  31. Baabdullah, T., Alzahrani, A., Rawat, D. B. & Liu, C. Efficiency of federated learning and blockchain in preserving privacy and enhancing the performance of credit card fraud detection systems. Future Internet. 16 (6), 196. https://doi.org/10.3390/fi16060196 (2024).

    Google Scholar 

  32. Firdaus, M., Larasati, H. T. & Hyune-Rhee, K. Blockchain-based federated learning with homomorphic encryption for privacy-preserving healthcare data sharing. Internet Things. 31, 101579. https://doi.org/10.1016/j.iot.2025.101579 (2025).

    Google Scholar 

  33. McMahan, H. B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. Communication-efficient learning of deep networks from decentralized data, in Proc. 20th Int. Conf. Artif. Intell. Statist., pp. 1273–1282. (2017). https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com

  34. Karimireddy, S. P. et al. SCAFFOLD: Stochastic controlled averaging for federated learning, in Proc. 37th Int. Conf. Mach. Learn., pp. 5132–5143. (2020). https://proceedings.mlr.press/v119/karimireddy20a.html

  35. Li, T. et al. Federated optimization in heterogeneous networks, in Proc. Mach. Learn. Syst., pp. 429–450. (2020). https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html

  36. Bonawitz, K. et al. Practical secure aggregation for privacy-preserving machine learning, in Proc. ACM SIGSAC Conf. Comput. Commun. Security, pp. 1175–1191. (2017). https://doi.org/10.1145/3133956.3133982

  37. McMahan, H. B., Ramage, D., Talwar, K. & Zhang, L. Learning differentially private recurrent language models, in Proc. Int. Conf. Learn. Represent., pp. 1–15. (2018). https://doi.org/10.48550/arXiv.1710.06963

  38. Sébert, A. G., Sirdey, R., Stan, O. & Gouy-Pailler, C. Protecting data from all parties: combining FHE and DP in federated learning. ArXiv Preprint arXiv. https://doi.org/10.48550/arXiv.2205.04330 (2022). :2205.04330.

    Google Scholar 

  39. Sahani, M. & Sengupta, B. Split-n-Chain: Privacy-Preserving Multi-Node split learning with Blockchain-Based Auditability, arxiv Preprint arxiv:2503.07570, (2025). https://doi.org/10.48550/arXiv.2503.07570

Download references

colind88

Back To Top