Introduction Women’s health is a critical pillar of global public health, encompassing physical, mental, and reproductive well-being across all stages of life. Due to a combination of biological, social, and cultural factors, women are disproportionately affected by certain health conditions [1]. According to the World Health Organization (WHO), over 35 million new cancer cases are
AI driven hybrid convolutional and transformer based deep learning architecture for precise lung nodule classification – Scientific Reports
References
-
World Health Organization. (2024). Global cancer statistics for 2024. WHO Press.
-
National Lung Screening Trial Research Team. Reduced lung cancer mortality with low dose computed tomography screening. N. Engl. J. Med. 365(5), 395–409. https://doi.org/10.1056/NEJMoa1102873 (2011).
Google Scholar
-
de Koning, H. J. et al. Reduced lung cancer mortality with volume computed tomography screening in a randomized trial. N. Engl. J. Med. 382(6), 503–513. https://doi.org/10.1056/NEJMoa1911793 (2020).
Google Scholar
-
McWilliams, A. et al. Probability of cancer in pulmonary nodules detected on first screening computed tomography. N. Engl. J. Med. 369(10), 910–919. https://doi.org/10.1056/NEJMoa1214726 (2013).
Google Scholar
-
Armato, S. G. III. et al. The lung image database consortium and image database resource initiative: A completed reference database of lung nodules on computed tomography. Med. Phys. 38(2), 915–931. https://doi.org/10.1118/1.3528204 (2011).
Google Scholar
-
Silva, A. C., Shen, K., Phan, J. H. & Wang, M. D. Computer aided diagnosis in lung nodule detection and classification. Clin. Imaging 52, 1–13. https://doi.org/10.1016/j.clinimag.2018.04.008 (2018).
Google Scholar
-
Jacobs, C., van Ginneken, B. & de Hooge, J. Computer assisted detection improves radiologist sensitivity for pulmonary nodule identification. Eur. Radiol. 25(4), 1137–1144. https://doi.org/10.1007/s00330-014-3426-9 (2015).
Google Scholar
-
Hardie, R. C., Rogers, S. K., Sarraf, S. & Wilson, T. R. Performance analysis of a new computer aided detection system for pulmonary nodules in computed tomography. IEEE Trans. Med. Imaging 17(5), 789–798. https://doi.org/10.1109/42.736004 (1998).
Google Scholar
-
Kostis, W. J., Reeves, A. P., Yankelevitz, D. F. & Henschke, C. I. Three-dimensional segmentation and growth rate estimation of small pulmonary nodules in helical CT images. IEEE Trans. Med. Imaging 22(10), 1259–1274. https://doi.org/10.1109/TMI.2003.819951 (2003).
Google Scholar
-
Zhao, Y., Tan, Y. & Zhang, H. Edge preserving anisotropic diffusion filter for thoracic CT images. J. Digit. Imaging 26(2), 205–212. https://doi.org/10.1007/s10278-012-9502-x (2013).
Google Scholar
-
Li, Q., Sone, S. & Doi, K. Selective enhancement filters for nodules vessels and airways depicted on chest radiographs. Med. Phys. 30(8), 2040–2051. https://doi.org/10.1118/1.1589789 (2003).
Google Scholar
-
Setio, A. A. A. et al. Validation comparison and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images The LUNA16 challenge. Med. Image Analys. 42, 1–13. https://doi.org/10.1016/j.media.2017.06.015 (2017).
Google Scholar
-
Messay, T., Hardie, R. C. & Rogers, S. K. A new computational framework for false positive reduction in pulmonary nodule detection. Med. Phys. 37(4), 1945–1956. https://doi.org/10.1118/1.3357312 (2010).
Google Scholar
-
Tan, M., Weyde, T. & Hogg, C. Benchmark analysis of false positive reduction techniques in lung nodule segmentation. Int. J. Comput. Assist. Radiol. Surg. 10(3), 269–280. https://doi.org/10.1007/s11548-014-1055-y (2015).
Google Scholar
-
Murphy, K. et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k nearest neighbor classification. Med. Image Anal. 13(5), 820–830 (2009).
Google Scholar
-
Satheeskumaran, S., Venkatesan, C. & Saravanan, S. Real-time ECG signal pre-processing and neuro fuzzy-based CHD risk prediction. Int. J. Comput. Sci. Eng. 24(4), 323–330 (2021).
Google Scholar
-
Jubairahmed, L., Satheeskumaran, S. & Venkatesan, C. Contourlet transform based adaptive nonlinear diffusion filtering for speckle noise removal in ultrasound images. Clust. Comput. 22(Suppl 5), 11237–11246 (2019).
Google Scholar
-
Chellappan, R., Satheeskumaran, S., Venkatesan, C. & Saravanan, S. Discrete stationary wavelet transform and SVD-based digital image watermarking for improved security. Int. J. Comput. Sci. Eng. 24(4), 354–362 (2021).
Google Scholar
-
Arumugam, S. R., Ravichandran, B., Baskaran, D. & Annamalai, R. Lung lobe segmentation and lung cancer detection with hybrid optimization-enabled deep learning using CT images. J. Mechan. Med. Biol. https://doi.org/10.1142/S0219519424500477 (2025).
Google Scholar
-
Arumugam, S. R., Ulaganathan, S., Regunathan, R. & Vimala, S. Segmentation and classification of brain tumour with optimisation-enabled deep learning using MRI images. International Journal of Bio-Inspired Computation 26(1), 35–50. https://doi.org/10.1504/IJBIC.2025.148389 (2025).
Google Scholar
-
Lu, Y., Keung, P., Ladhak, F., Bhardwaj, V., Zhang, S., & Sun, J. (2018). A neural interlingua for multilingual machine translation. In Proceedings of the Third Conference on Machine Translation: Research Papers (pp. 84–92). Association for Computational Linguistics. https://aclanthology.org/W18-6309
-
Cao, S., & Wang, L. (2022). HIBRIDS: Attention with hierarchical biases for structure-aware long document summarization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 786–807). Association for Computational Linguistics. https://aclanthology.org/2022.acl-long.58
-
Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B. A., & Roth, H. R. (2022). UNETR: Transformers for 3D medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022) (pp. 574–584).
-
Lee, S. et al. Deep feature fusion via transfer learning for multi-class network intrusion detection. Appl. Sci. 15(9), 4851. https://doi.org/10.3390/app15094851 (2025).
Google Scholar
-
Candemir, S., Hussein, S. & Antani, S. An open benchmarking resource for pulmonary nodule computer assisted detection on public thoracic CT datasets. J. Biomed. Inform. 96, 103239. https://doi.org/10.1016/j.jbi.2019.103239 (2019).
Google Scholar
Download references
