Skip to content
ai-driven-hybrid-convolutional-and-transformer-based-deep-learning-architecture-for-precise-lung-nodule-classification-–-scientific-reports

AI driven hybrid convolutional and transformer based deep learning architecture for precise lung nodule classification – Scientific Reports

References

  1. World Health Organization. (2024). Global cancer statistics for 2024. WHO Press.

  2. National Lung Screening Trial Research Team. Reduced lung cancer mortality with low dose computed tomography screening. N. Engl. J. Med. 365(5), 395–409. https://doi.org/10.1056/NEJMoa1102873 (2011).

    Google Scholar 

  3. de Koning, H. J. et al. Reduced lung cancer mortality with volume computed tomography screening in a randomized trial. N. Engl. J. Med. 382(6), 503–513. https://doi.org/10.1056/NEJMoa1911793 (2020).

    Google Scholar 

  4. McWilliams, A. et al. Probability of cancer in pulmonary nodules detected on first screening computed tomography. N. Engl. J. Med. 369(10), 910–919. https://doi.org/10.1056/NEJMoa1214726 (2013).

    Google Scholar 

  5. Armato, S. G. III. et al. The lung image database consortium and image database resource initiative: A completed reference database of lung nodules on computed tomography. Med. Phys. 38(2), 915–931. https://doi.org/10.1118/1.3528204 (2011).

    Google Scholar 

  6. Silva, A. C., Shen, K., Phan, J. H. & Wang, M. D. Computer aided diagnosis in lung nodule detection and classification. Clin. Imaging 52, 1–13. https://doi.org/10.1016/j.clinimag.2018.04.008 (2018).

    Google Scholar 

  7. Jacobs, C., van Ginneken, B. & de Hooge, J. Computer assisted detection improves radiologist sensitivity for pulmonary nodule identification. Eur. Radiol. 25(4), 1137–1144. https://doi.org/10.1007/s00330-014-3426-9 (2015).

    Google Scholar 

  8. Hardie, R. C., Rogers, S. K., Sarraf, S. & Wilson, T. R. Performance analysis of a new computer aided detection system for pulmonary nodules in computed tomography. IEEE Trans. Med. Imaging 17(5), 789–798. https://doi.org/10.1109/42.736004 (1998).

    Google Scholar 

  9. Kostis, W. J., Reeves, A. P., Yankelevitz, D. F. & Henschke, C. I. Three-dimensional segmentation and growth rate estimation of small pulmonary nodules in helical CT images. IEEE Trans. Med. Imaging 22(10), 1259–1274. https://doi.org/10.1109/TMI.2003.819951 (2003).

    Google Scholar 

  10. Zhao, Y., Tan, Y. & Zhang, H. Edge preserving anisotropic diffusion filter for thoracic CT images. J. Digit. Imaging 26(2), 205–212. https://doi.org/10.1007/s10278-012-9502-x (2013).

    Google Scholar 

  11. Li, Q., Sone, S. & Doi, K. Selective enhancement filters for nodules vessels and airways depicted on chest radiographs. Med. Phys. 30(8), 2040–2051. https://doi.org/10.1118/1.1589789 (2003).

    Google Scholar 

  12. Setio, A. A. A. et al. Validation comparison and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images The LUNA16 challenge. Med. Image Analys. 42, 1–13. https://doi.org/10.1016/j.media.2017.06.015 (2017).

    Google Scholar 

  13. Messay, T., Hardie, R. C. & Rogers, S. K. A new computational framework for false positive reduction in pulmonary nodule detection. Med. Phys. 37(4), 1945–1956. https://doi.org/10.1118/1.3357312 (2010).

    Google Scholar 

  14. Tan, M., Weyde, T. & Hogg, C. Benchmark analysis of false positive reduction techniques in lung nodule segmentation. Int. J. Comput. Assist. Radiol. Surg. 10(3), 269–280. https://doi.org/10.1007/s11548-014-1055-y (2015).

    Google Scholar 

  15. Murphy, K. et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k nearest neighbor classification. Med. Image Anal. 13(5), 820–830 (2009).

    Google Scholar 

  16. Satheeskumaran, S., Venkatesan, C. & Saravanan, S. Real-time ECG signal pre-processing and neuro fuzzy-based CHD risk prediction. Int. J. Comput. Sci. Eng. 24(4), 323–330 (2021).

    Google Scholar 

  17. Jubairahmed, L., Satheeskumaran, S. & Venkatesan, C. Contourlet transform based adaptive nonlinear diffusion filtering for speckle noise removal in ultrasound images. Clust. Comput. 22(Suppl 5), 11237–11246 (2019).

    Google Scholar 

  18. Chellappan, R., Satheeskumaran, S., Venkatesan, C. & Saravanan, S. Discrete stationary wavelet transform and SVD-based digital image watermarking for improved security. Int. J. Comput. Sci. Eng. 24(4), 354–362 (2021).

    Google Scholar 

  19. Arumugam, S. R., Ravichandran, B., Baskaran, D. & Annamalai, R. Lung lobe segmentation and lung cancer detection with hybrid optimization-enabled deep learning using CT images. J. Mechan. Med. Biol. https://doi.org/10.1142/S0219519424500477 (2025).

    Google Scholar 

  20. Arumugam, S. R., Ulaganathan, S., Regunathan, R. & Vimala, S. Segmentation and classification of brain tumour with optimisation-enabled deep learning using MRI images. International Journal of Bio-Inspired Computation 26(1), 35–50. https://doi.org/10.1504/IJBIC.2025.148389 (2025).

    Google Scholar 

  21. Lu, Y., Keung, P., Ladhak, F., Bhardwaj, V., Zhang, S., & Sun, J. (2018). A neural interlingua for multilingual machine translation. In Proceedings of the Third Conference on Machine Translation: Research Papers (pp. 84–92). Association for Computational Linguistics. https://aclanthology.org/W18-6309

  22. Cao, S., & Wang, L. (2022). HIBRIDS: Attention with hierarchical biases for structure-aware long document summarization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 786–807). Association for Computational Linguistics. https://aclanthology.org/2022.acl-long.58

  23. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B. A., & Roth, H. R. (2022). UNETR: Transformers for 3D medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022) (pp. 574–584).

  24. Lee, S. et al. Deep feature fusion via transfer learning for multi-class network intrusion detection. Appl. Sci. 15(9), 4851. https://doi.org/10.3390/app15094851 (2025).

    Google Scholar 

  25. Candemir, S., Hussein, S. & Antani, S. An open benchmarking resource for pulmonary nodule computer assisted detection on public thoracic CT datasets. J. Biomed. Inform. 96, 103239. https://doi.org/10.1016/j.jbi.2019.103239 (2019).

    Google Scholar 

Download references

colind88

Back To Top