Skip to content
approaches-for-accelerating-microbial-gene-function-discovery-using-artificial-intelligence-–-nature-microbiology

Approaches for accelerating microbial gene function discovery using artificial intelligence – Nature Microbiology

  • Hutchison, C. A. I. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016).

    Article  PubMed  Google Scholar 

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, Y. et al. In silico protein interaction screening uncovers DONSON’s role in replication initiation. Science 381, eadi3448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingraham, J. B. et al. Illuminating protein space with a programmable generative model. Nature 623, 1070–1078 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N. & Madani, A. ProGen2: exploring the boundaries of protein language models. Cell Syst. 14, 968–978.e3 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee, H. S. & Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. 100, 21.24.1–21.24.14 (2012).

    Article  Google Scholar 

  • Gao, Y. et al. Unraveling the functions of uncharacterized transcription factors in Escherichia coli using ChIP-exo. Nucleic Acids Res. 49, 9696–9710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, G. B., Gao, Y., Palsson, B. O. & Lee, S. Y. DeepTFactor: a deep learning-based tool for the prediction of transcription factors. Proc. Natl Acad. Sci. USA 118, e2021171118 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y. et al. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res. 46, 10682–10696 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Rueda, E. & Collado-Vides, J. The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res. 28, 1838–1847 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejia-Almonte, C. et al. Redefining fundamental concepts of transcription initiation in bacteria. Nat. Rev. Genet. 21, 699–714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihama, A., Shimada, T. & Yamazaki, Y. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res. 44, 2058–2074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastry, A. V. et al. The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat. Commun. 10, 5536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodionova, I. A. et al. Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Commun. Biol. 4, 991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poudel, S. et al. Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response. Proc. Natl Acad. Sci. USA 117, 17228–17239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, H. K. et al. The extracytoplasmic function sigma factor σS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. J. Bacteriol. 194, 4342–4354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catoiu, E. A. et al. iModulonDB 2.0: dynamic tools to facilitate knowledge-mining and user-enabled analyses of curated transcriptomic datasets. Nucleic Acids Res. 53, D99–D106 (2025).

    Article  PubMed  Google Scholar 

  • Yu, C., Zavaljevski, N., Desai, V. & Reifman, J. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases. Proteins 74, 449–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Desai, D. K., Nandi, S., Srivastava, P. K. & Lynn, A. M. ModEnzA: accurate identification of metabolic enzymes using function specific profile HMMs with optimised discrimination threshold and modified emission probabilities. Adv. Bioinform 2011, 743782 (2011).

    Article  Google Scholar 

  • Claudel-Renard, C., Chevalet, C., Faraut, T. & Kahn, D. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res. 31, 6633–6639 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl Acad. Sci. USA 116, 13996–14001 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, G. B. et al. Functional annotation of enzyme-encoding genes using deep learning with transformer layers. Nat. Commun. 14, 7370 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Nielsen, H. & Winther, O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 50, W228–W234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, T. et al. Enzyme function prediction using contrastive learning. Science 379, 1358–1363 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Freddolino, L. & Zhang, Y. COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res. 45, W291–W299 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson, T., Bileschi, M. L., Belanger, D. & Colwell, L. J. ProteInfer, deep neural networks for protein functional inference. eLife 12, e80942 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T. et al. Discovery of diverse and high-quality mRNA capping enzymes through a language model-enabled platform. Sci. Adv. 11, eadt0402 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateus, A. et al. The functional proteome landscape of Escherichia coli. Nature 588, 473–478 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulmanov, M., Khan, M. A., Hoehndorf, R. & Wren, J. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics 34, 660–668 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Bileschi, M. L. et al. Using deep learning to annotate the protein universe. Nat. Biotechnol. 40, 932–937 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Abdin, O., Nim, S., Wen, H. & Kim, P. M. PepNN: a deep attention model for the identification of peptide binding sites. Commun. Biol. 5, 503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrio-Hernandez, I. et al. Clustering predicted structures at the scale of the known protein universe. Nature 622, 637–645 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalkiran, A. et al. ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinform. 19, 334 (2018).

    Article  CAS  Google Scholar 

  • Shi, Z. et al. Enzyme Commission number prediction and benchmarking with hierarchical dual-core multitask learning framework. Research 6, 0153 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T. B., de Sá, A. G. C., Rodrigues, C. H. M., Pires, D. E. V. & Ascher, D. B. LEGO-CSM: a tool for functional characterization of proteins. Bioinformatics 39, btad402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buton, N., Coste, F. & Le Cunff, Y. Predicting enzymatic function of protein sequences with attention. Bioinformatics 39, btad620 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, S. R. et al. Evidential deep learning for trustworthy prediction of Enzyme Commission number. Brief. Bioinform. 25, bbad401 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe, N., Yamamoto, M., Murata, M., Kuriya, Y. & Araki, M. EnzymeNet: residual neural networks model for Enzyme Commission number prediction. Bioinform. Adv. 3, vbad173 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • colind88

    Back To Top