Introduction Women’s health is a critical pillar of global public health, encompassing physical, mental, and reproductive well-being across all stages of life. Due to a combination of biological, social, and cultural factors, women are disproportionately affected by certain health conditions [1]. According to the World Health Organization (WHO), over 35 million new cancer cases are
Explainable judgment prediction and article-violation analysis using deep LexFaith hierarchical BERT model – Scientific Reports
References
-
Kauffman, M. E. & Soares, M. N. AI in legal services: new trends in AI-enabled legal services. Service Oriented Comput. Appl. 14 (4), 223–226. https://doi.org/10.1007/s11761-020-00305-x (2020).
Google Scholar
-
Avgerinos Loutsaris, M., Lachana, Z., Alexopoulos, C. & Charalabidis, Y. Legal Text Processing: Combing two legal ontological approaches through text mining, in Proceedings of the 22nd Annual International Conference on Digital Government Research, in dg.o ’21. New York, NY, USA: Association for Computing Machinery, 522–532. https://doi.org/10.1145/3463677.3463730 (2021).
-
Mohan, D. & Nair, L. R. Deep Learning-Based Semantic Segmentation for Legal Texts: Unveiling Rhetorical Roles in Legal Case Documents, in E3S Web of Conferences, EDP Sciences, https://doi.org/10.1051/e3sconf/202452904019 (2024).
-
Dai, Y., Tong, X. & Jia, X. Executives’ legal expertise and corporate innovation. Corp. Governance: Int. Rev. 32 (6), 954–983. https://doi.org/10.1111/corg.12578 (2024).
Google Scholar
-
Liu, S. et al. Jun., The Scales of Justitia: A Comprehensive Survey on Safety Evaluation of LLMs, Accessed: Sep. 30, 2025. [Online]. Available: https://arxiv.org/pdf/2506.11094 (2025).
-
Alexandre, R. Q. & Wrembel On Integrating and Classifying Legal Text Documents, in Database and Expert Systems Applications, J. and K. G. and T. A. M. and K. I. Hartmann Sven and Küng, Ed., Cham: Springer International Publishing, 385–399. (2020).
-
Vianna, D., de Moura, E. S. & da Silva, A. S. A topic discovery approach for unsupervised organization of legal document collections. Artif. Intell. Law (Dordr). 32 (4), 1045–1074. https://doi.org/10.1007/s10506-023-09371-w (2024).
Google Scholar
-
Hacker, P., Krestel, R., Grundmann, S. & Naumann, F. Explainable AI under contract and tort law: legal incentives and technical challenges. Artif. Intell. Law (Dordr). 28 (4), 415–439. https://doi.org/10.1007/s10506-020-09260-6 (2020).
Google Scholar
-
Wu, L. et al. “TFGIN: Tight-Fitting Graph Inference Network for Table-based Fact Verification,”. ACM Trans Inf Syst, 43(5), 1–26. https://doi.org/10.1145/3734520 (2025).
Google Scholar
-
Prabhakar, P. & Pati, P. B. Enhancing Indian legal judgment classification with embeddings, feature selection, and ensemble strategies. Artif. Intell. Law (Dordr). https://doi.org/10.1007/s10506-025-09438-w (2025).
Google Scholar
-
Chen, J. BiLSTM-enhanced legal text extraction model using fuzzy logic and metaphor recognition. PeerJ Comput. Sci. 11, e2697. https://doi.org/10.7717/peerj-cs.2697 (2025).
-
Chen, H., Wu, L., Chen, J., Lu, W. & Ding, J. A comparative study of automated legal text classification using random forests and deep learning. Inf. Process. Manag. 59 (2), 102798. https://doi.org/10.1016/j.ipm.2021.102798 (2022).
Google Scholar
-
Yin, Z. & Wang, S. Enhancing scientific table Understanding with type-guided chain-of-thought. Inf. Process. Manag. 62 (4), 104159. https://doi.org/10.1016/J.IPM.2025.104159 (2025).
-
Wen, Y. & Ti, P. A Study of Legal Judgment Prediction Based on Deep Learning Multi-Fusion Models—Data from China. Sage Open. 14(3), https://doi.org/10.1177/21582440241257682 (2024).
-
Alghazzawi, D. et al. Efficient prediction of court judgments using an LSTM + CNN neural network model with an optimal feature set. Math. 2022. 10 (5), 683. https://doi.org/10.3390/MATH10050683 (2022).
-
Gan, L., Kuang, K., Yang, Y. & Wu, F. Judgment Prediction via Injecting Legal Knowledge into Neural Networks. Proc. AAAI Conf. Artif. Intell. 35(14), 12866–12874. https://doi.org/10.1609/AAAI.V35I14.17522 (2021).
-
Wu, Y. et al. Towards interactivity and interpretability: A Rationale-based legal judgment prediction framework. Proc. 2022 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2022. 4787–4799. https://doi.org/10.18653/V1/2022.EMNLP-MAIN.316 (2022).
-
Zhang, Y., Wei, X. & Yu, H. HD-LJP: A hierarchical Dependency-based legal judgment prediction framework for Multi-task learning. Knowl. Based Syst. 299, 112033. https://doi.org/10.1016/J.KNOSYS.2024.112033 (2024).
-
Li, J. & Ouyang, J. A method of legal judgment prediction via prompt learning and charge keywords fusion. Artif. Intell. Law (Dordr). 1–23. https://doi.org/10.1007/S10506-025-09469-3 (2025).
-
Zhao, Q. Legal judgment prediction via legal knowledge extraction and fusion, Journal of King Saud University – Computer and Information Sciences, 37 (3), 1–16, https://doi.org/10.1007/S44443-025-00019-0 (2025).
-
Dong, Y., Li, X., Shi, J., Dong, Y. & Chen, C. Graph contrastive learning networks with augmentation for legal judgment prediction. Artif. Intell. Law (Dordr). 1–24. https://doi.org/10.1007/S10506-024-09407-9 (Jun. 2024).
-
Sun, J., Huang, S. & Wei, C. Chinese legal judgment prediction via knowledgeable prompt learning. Expert Syst. Appl. 238, 122177. https://doi.org/10.1016/J.ESWA.2023.122177 (2024).
-
Bi, S., Zhou, Z., Pan, L. & Qi, G. “Judicial knowledge-enhanced magnitude-aware reasoning for numerical legal judgment prediction,”. Artif Intell Law (Dordr) 31(4), 773–806. https://doi.org/10.1007/S10506-022-09337-4 (2023).
Google Scholar
-
Ma, L. et al. Jul., Legal Judgment Prediction with Multi-Stage Case Representation Learning in the Real Court Setting, SIGIR 2021 – Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 993–1002, https://doi.org/10.1145/3404835.3462945 (2021).
-
Yue, L. et al. Jul., NeurJudge: A Circumstance-aware Neural Framework for Legal Judgment Prediction, SIGIR 2021 – Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 973–982, https://doi.org/10.1145/3404835.3462826 (2021).
-
Xiao, C., Hu, X., Liu, Z., Tu, C. & Sun, M. Lawformer: A pre-trained language model for Chinese legal long documents. AI Open. 2, 79–84. https://doi.org/10.1016/J.AIOPEN.2021.06.003 (2021).
-
Bai, Q., Lv, P., Jiang, C. & Yang, X. AgentsBench: A Multi-Agent LLM Simulation Framework for Legal Judgment Prediction. Syst. 2025 13(8), 641. https://doi.org/10.3390/SYSTEMS13080641. (2025)
Google Scholar
-
Cui, J., Shen, X. & Wen, S. A survey on legal judgment prediction: Datasets, Metrics, models and challenges. IEEE Access. 11, 102050–102071. https://doi.org/10.1109/ACCESS.2023.3317083 (2023).
Google Scholar
-
Sukanya, G. & Priyadarshini, J. Modified Hierarchical-Attention Network model for legal judgment predictions. Data Knowl. Eng. 147, 102203. https://doi.org/10.1016/J.DATAK.2023.102203 (2023).
-
Sukanya, G. & Priyadarshini, J. Enhanced hybrid deep learning model with improved Self-Attention mechanism for legal judgment prediction. IEEE Access. 13, 139868–139882. https://doi.org/10.1109/ACCESS.2025.3596180 (2025).
Google Scholar
-
Mahoney, C., Gronvall, P., Huber-Fliflet, N. & Zhang, J. Explainable Text Classification Techniques in Legal Document Review: Locating Rationales without Using Human Annotated Training Text Snippets, in IEEE International Conference on Big Data (Big Data), 2044–2051. https://doi.org/10.1109/BigData55660.2022.10020626 (2022).
-
Yin, L. et al. DPAL-BERT: A Faster and Lighter Question Answering Model. Comput. Model. Eng. Sci. 141(1), 771–786. https://doi.org/10.32604/CMES.2024.052622 (2024).
-
Huang, F. et al. Large Language Model Interaction Simulator for Cold-Start Item Recommendation, Feb. Paper presented at the WSDM ‘25, New York, NY, USAfrom https://doi.org/10.1145/3701551.3703546 (2024).
-
Li, C. et al. Jun., Loki’s Dance of Illusions: A Comprehensive Survey of Hallucination in Large Language Models, IEEE Transactions on Knowledge and Data Engineering, Accessed: Oct. 07, 2025. [Online]. Available: https://arxiv.org/pdf/2507.02870 (2025).
-
Wang, Q., Chen, J., Song, Y., Li, X. & Xu, W. Fusing Visual Quantified Features for Heterogeneous Traffic Flow Prediction, Promet – Traffic&Transportation, 36 (6), 1068–1077 https://doi.org/10.7307/PTT.V36I6.667 (2024).
-
Chen, J., Zhang, S. & Xu, W. Scalable prediction of heterogeneous traffic flow with enhanced non-periodic feature modeling. Expert Syst. Appl. 294, 128847. https://doi.org/10.1016/J.ESWA.2025.128847 (2025).
-
Huang, C. Q. et al. XKT: toward explainable knowledge tracing model with cognitive learning theories for questions of multiple knowledge concepts. IEEE Trans. Knowl. Data Eng. 36 (11), 7308–7325. https://doi.org/10.1109/TKDE.2024.3418098 (2024).
Google Scholar
-
Jing, L., Fan, X., Feng, D., Lu, C. & Jiang, S. A patent text-based product conceptual design decision-making approach considering the fusion of incomplete evaluation semantic and scheme beliefs. Appl. Soft Comput. 157, 111492. https://doi.org/10.1016/j.asoc.2024.111492 (2024).
Google Scholar
-
Naz, A. et al. Using Transformers and Bi-LSTM with sentence embeddings for prediction of openness human personality trait. PeerJ Comput. Sci. 11, e2781. https://doi.org/10.7717/peerj-cs.2781 (2025).
-
Burton, S. et al. Mind the gaps: assuring the safety of autonomous systems from an engineering, ethical, and legal perspective. Artif. Intell. 279, 103201. https://doi.org/10.1016/j.artint.2019.103201 (2020).
Google Scholar
-
Naz, A. et al. Machine and deep learning for personality traits detection: a comprehensive survey and open research challenges. Artif. Intell. Rev. 58 (8), 239. https://doi.org/10.1007/s10462-025-11245-3 (2025).
Google Scholar
-
Badshah, A., Daud, A., Khan, H. U., Alghushairy, O. & Bukhari, A. Optimizing the over and underutilization of network resources during peak and Off-Peak hours. IEEE Access. 12, 82549–82559. https://doi.org/10.1109/ACCESS.2024.3402396 (2024).
Google Scholar
-
Nararatwong, R., Kertkeidkachorn, N. & Ichise, R. KIQA: Knowledge-Infused Question Answering Model for Financial Table-Text Data, DeeLIO 2022 – Deep Learning Inside Out: 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, Proceedings of the Workshop, 53–61, https://doi.org/10.18653/V1/2022.DEELIO-1.6 (2022).
Download references
