Get the scoop on the most recent ranking from the Tiobe programming language index, learn a no-fuss way to distribute DIY tooling across Python projects, and take a peek at ComfyUI: interactive, node-based tools for generative AI workloads in Python. Python faces new challenges from old rivals, but is it a blip or something more?

Opening the black box: explainable AI for automated bioturbation analysis in cores and outcrops – Scientific Reports
References
-
Dalrymple, R. W. & James, N. P. Facies Models 4 (Geological Association of Canada, 2010).
-
Pemberton, S. G. et al. Ichnology and Sedimentology of Shallow to Marginal Marine Systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin Vol. 15 (Geological Association of Canada, 2001).
-
de Pires, R., Bonar, A., Coronado, D. D., Marfurt, K. & Nicholson, C. Deep convolutional neural networks as a geological image classification tool. Sediment. Record. 17, 4–9 (2019).
Google Scholar
-
Yu, C. et al. Artificial intelligence in paleontology. Earth Sci. Rev. 252, 104765. https://doi.org/10.1016/j.earscirev.2024.104765 (2024).
Google Scholar
-
Knutsen, E. M. & Konovalov, D. A. Accelerating segmentation of fossil CT scans through deep learning. Sci. Rep. 14, 20943. https://doi.org/10.1038/s41598-024-71245-1 (2024).
Google Scholar
-
de Pires, R., Duarte, D., Nicholson, C., Slatt, R. & Marfurt, K. J. Petrographic microfacies classification with deep convolutional neural networks. Comput. Geosci. 142, 104481. https://doi.org/10.1016/j.cageo.2020.104481 (2020).
Google Scholar
-
Ayranci, K., Yildirim, I. E., Waheed, U. & MacEachern, J. A. Deep learning applications in geosciences: insights into ichnological analysis. 11, 7736 (2021).
-
Timmer, E., Knudson, C. & Gingras, M. Applying deep learning for identifying bioturbation from core photographs. AAPG Bull. 105, 631–638. https://doi.org/10.1306/08192019051 (2021).
Google Scholar
-
Kikuchi, K. & Naruse, H. Abundance of trace fossil Phycosiphon incertum in core sections measured using a convolutional neural network. Sed. Geol. 461, 106570. https://doi.org/10.1016/j.sedgeo.2023.106570 (2024).
Google Scholar
-
Qi, R., Zheng, Y., Yang, Y., Cao, C. C. & Hsiao, J. H. Explanation strategies in humans versus current explainable artificial intelligence: Insights from image classification. Br. J. Psychol. https://doi.org/10.1111/bjop.12714 (2024).
Google Scholar
-
Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215. https://doi.org/10.1038/s42256-019-0048-x (2019).
Google Scholar
-
Ghnemat, R., Alodibat, S. & Abu Al-Haija, Q. Explainable artificial intelligence (XAI) for deep learning based medical imaging classification. J. Imaging. 9, 177 (2023).
Google Scholar
-
Patrício, C., Neves, J. C. & Teixeira, L. F. Explainable deep learning methods in medical image classification: A survey. ACM Comput. Surv. 56, 85. https://doi.org/10.1145/3625287 (2023).
-
Shivhare, I., Jogani, V., Purohit, J. & Shrawne, S. C. Analysis of explainable artificial intelligence methods on medical image classification. In 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 1–5. https://doi.org/10.1109/ICAECT57570.2023.10118312 (2023).
-
Wyatt, L. S., van Karnenbeek, L. M., Wijkhuizen, M., Geldof, F. & Dashtbozorg, B. Explainable artificial intelligence (XAI) for oncological ultrasound image analysis: a systematic review. Appl. Sci. 14, 8108 (2024).
Google Scholar
-
Zheng, H. et al. Enhancing gastrointestinal submucosal tumor recognition in endoscopic ultrasonography: A novel multi-attribute guided contextual attention network. Expert Syst. Appl. 242, 122725. https://doi.org/10.1016/j.eswa.2023.122725 (2024).
Google Scholar
-
Dahal, A. & Lombardo, L. Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling. Comput. Geosci. 176, 105364. https://doi.org/10.1016/j.cageo.2023.105364 (2023).
Google Scholar
-
Jena, R. et al. Earthquake spatial probability and hazard estimation using various explainable AI (XAI) models at the Arabian peninsula. Remote Sens. Applications: Soc. Environ. 31, 101004. https://doi.org/10.1016/j.rsase.2023.101004 (2023).
Google Scholar
-
Krell, E., Kamangir, H., Collins, W., King, S. A. & Tissot, P. Aggregation strategies to improve XAI for geoscience models that use correlated, high-dimensional rasters. Environ. Data Sci. 2, e45. https://doi.org/10.1017/eds.2023.39 (2023).
Google Scholar
-
Taylor, A. M. & Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 150, 141–148. https://doi.org/10.1144/gsjgs.150.1.0141 (1993).
Google Scholar
-
Bromley, R. G. Trace Fossils: Biology, Taphonomy and Applications, 2nd ed, Vol. 361 (Chapman and Hall, 1996).
-
Gingras, M. K., Bann, K. L., MacEachern, J. A., Waldron, J. & Pemberton, S. G. In Applied Ichnology Vol. Short Course Notes 52 (eds MacEachern, J. A. et al.) 1–26 (SEPM Society for Sedimentary Geology, 2007).
-
Gingras, M. K. et al. In Developments in Sedimentology. Vol. 64, 463–505 (eds Knaust, D. & Bromley, R. G.) (Elsevier, 2012).
-
Carmona, N. B., Buatois, L. A., Ponce, J. J. & Mángano, M. G. Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: Trace-fossil distribution and response to environmental stresses. Palaeogeogr., Palaeoclimatol. Palaeoecol. 273, 75–86. https://doi.org/10.1016/j.palaeo.2008.12.003 (2009).
Google Scholar
-
MacEachern, J. A., Bann, K. L., Bhattacharya, J. P. & Howell, C. D. J. In River Deltas – Concepts, Models, and Examples Vol. Special Publication 83 (eds Giosan, L. & Bhattacharya, J. P.) 49–85 (2005).
-
MacEachern, J. A. & Bann, K. L. Departures from the archetypal deltaic ichnofacies. Geol. Soc. Lond. Special Publications. 522, 175–213. https://doi.org/10.1144/SP522-2022-56 (2023).
Google Scholar
-
MacEachern, J. A., Bann, K. L., Pemberton, S. G. & Gingras, M. K. In Applied Ichnology Vol. Short Course Notes No. 52 (eds MacEachern, J. A. et al.) 27–64 (SEPM, 2007).
-
Gani, M. R., Bhattacharya, J. P. & MacEachern, J. A. In Applied Ichnology Vol. Short Course Notes 52 (eds MacEachern, J. A. et al.) 209–225 (SEPM, Society of Sedimentary Geology, 2007).
-
Borys, K. et al. Explainable AI in medical imaging: An overview for clinical practitioners – Saliency-based XAI approaches. Eur. J. Radiol. 162, 110787. https://doi.org/10.1016/j.ejrad.2023.110787 (2023).
Google Scholar
-
Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision. 128, 336–359. https://doi.org/10.1007/s11263-019-01228-7 (2020).
Google Scholar
-
Adebayo, J. et al. Sanity checks for saliency maps. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, 9525–9536 (2018).
Download references
