Skip to content
systematic-review-and-meta-analysis-of-regulator-approved-deep-learning-systems-for-fundus-diabetic-retinopathy-detections-–-npj-digital-medicine

Systematic review and meta-analysis of regulator-approved deep learning systems for fundus diabetic retinopathy detections – npj Digital Medicine

  • Yau, J. W. et al. Global prevalence and major risk factors of diabetic retinopathy. Diab. Care 35, 556–64 (2012).

    Google Scholar 

  • Teo, Z. L. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128, 1580–1591 (2021).

    Google Scholar 

  • International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; 2021.

  • Flaxel, C. J. et al. Diabetic retinopathy preferred practice pattern®. Ophthalmology 127, P66–P145 (2020).

    Google Scholar 

  • Cheung, N. et al. Diabetic retinopathy. Lancet 376, 124–36 (2010).

    Google Scholar 

  • Solomon, S. D. et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diab. Care 40, 412–418, https://doi.org/10.2337/dc16-2641 (2017).

    Google Scholar 

  • Rahmati, M. et al. Factors affecting global adherence for the uptake of diabetic retinopathy screening: a systematic review and meta-analysis. Am. J. Ophthalmol. 268, 94–107 (2024).

    Google Scholar 

  • Teo, Z. L. et al. Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy? A global perspective. Eye 34, 1255–1261 (2020).

    Google Scholar 

  • Liew, G., Michaelides, M. & Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 4, e004015 (2014).

    Google Scholar 

  • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016).

    Google Scholar 

  • Ting, D. S. W. et al. Development and validation of a deep-learning system for diabetic retinopathy in multi-ethnic populations. JAMA 318, 2211–2223 (2017).

    Google Scholar 

  • Bellemo, V. et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit. health 1, e35–e44 (2019).

    Google Scholar 

  • Alqahtani, A. S. et al. “The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis.” Int. J. Retina Vitreous 1148. 2025.

  • Abràmoff, M. D. et al. Pivotal trial of an autonomous AI system for detection of diabetic retinopathy. npj Digit. Med. 1, 39 (2018).

    Google Scholar 

  • Ipp, E. et al. Pivotal evaluation of an AI system for autonomous detection of diabetic retinopathy. JAMA Netw. Open 4, e2134254 (2021).

    Google Scholar 

  • Bhaskaranand, M. et al. Automated DR screening with the EyeArt system: >100 000 encounters. Diab. Technol. Ther. 21, 635–643 (2019).

    Google Scholar 

  • Lim, J. I. et al. Artificial intelligence detection of diabetic retinopathy: subgroup comparison of the EyeArt System with ophthalmologists’ dilated examinations. Ophthalmol. Sci. 3, 100228 (2022).

    Google Scholar 

  • Kaushal, A., Altman, R. & Langlotz, C. Geographic and demographic bias in AI diagnostic performance. Nat. Med. 28, 1328–1334 (2022).

    Google Scholar 

  • Khinvasara, T., Tzenios, N. & Shankar, A. Post-market surveillance of medical devices using AI. J. Complement. Altern. Med. Res. 25, 108–22 (2024).

    Google Scholar 

  • Khan, Z. et al. Diagnostic accuracy of IDx-DR: a systematic review and meta-analysis. Am. J. Ophthalmol. 273, 192–204 (2025).

    Google Scholar 

  • Brant, A. et al. Performance of a deep learning diabetic retinopathy algorithm in India. JAMA Netw. Open 8, e250984 (2025).

    Google Scholar 

  • Chotcomwongse, P. et al. Transforming non-digital, clinical workflows to detect and track vision-threatening diabetic retinopathy via a digital platform integrating artificial intelligence: implementation research. Ophthalmol. Ther. 14, 447–460 (2025).

    Google Scholar 

  • Tan-Torres, A. et al. Validation oF A Deep Learning Model For Diabetic Retinopathy On Patients With Young-onset Diabetes. Ophthalmol. Ther. 14, 1147–1155 (2025).

    Google Scholar 

  • Wei, Q. et al. Practical applications of artificial intelligence diagnostic systems in fundus retinal disease screening. Int. J. Gen. Med. 18, 1173–1180 (2025).

    Google Scholar 

  • Wroblewski, J. J. et al. Diabetic retinopathy screening using smartphone-based fundus photography and deep-learning artificial intelligence in the Yucatan Peninsula: a field study. J. Diab. Sci. Technol. 19, 370–376 (2025).

    Google Scholar 

  • Doğan, M. E. et al. Head-to-head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Eye 38, 1694–1701 (2024).

    Google Scholar 

  • Grzybowski, A. et al. Diagnostic accuracy of automated diabetic retinopathy image assessment software: IDx-DR and RetCAD. Ophthalmol. Ther. 14, 73–84 (2025).

    Google Scholar 

  • Grzybowski, A. et al. Evaluating the efficacy of AI systems in diabetic retinopathy detection: a comparative analysis of Mona DR and IDx-DR. Acta Ophthalmol. 103, 388–395 (2025).

    Google Scholar 

  • Ibañez-Bruron, M. C. et al. Uso de inteligencia artificial en el tamizaje de retinopatía diabética: experiencia en un servicio de salud de Santiago, Chile” [Use of artificial intelligence in diabetic retinopathy screening: experience in a health service in Santiago, Chile]. Rev. Med. Chile 152, 1148–1153 (2024).

    Google Scholar 

  • Karabeg, M. et al. A pilot cost-analysis study comparing AI-based EyeArt® and ophthalmologist assessment of diabetic retinopathy in minority women in Oslo, Norway. Int. J. Retin. Vitreous 10, 40 (2024).

    Google Scholar 

  • Li, Z. et al. Application of artificial intelligence remote screening system for diabetic retinopathy in Yinchuan community of Ningxia. Int. Eye Sci. 12, 1365–1368 (2022). (2022).

    Google Scholar 

  • Musetti, D. et al. Autonomous artificial intelligence versus teleophthalmology for diabetic retinopathy. Eur. J. Ophthalmol. 35, 232–238 (2025).

    Google Scholar 

  • Espeut, J., Molina, F. & Van, T. N. N. Effectiveness of artificial intelligence for diabetic retinopathy screening in community in Binh Dinh Province, Vietnam. Taiwan J. Ophthalmol. 14, 394–402 (2024).

    Google Scholar 

  • Piatti, A. et al. Feasibility and accuracy of the screening for diabetic retinopathy using a fundus camera and an artificial intelligence pre-evaluation application. Acta Diabetol. 61, 63–68 (2024).

    Google Scholar 

  • Piatti, A. et al. Diabetic retinopathy screening with confocal fundus camera and artificial intelligence – assisted grading. Eur. J. Ophthalmol. 35, 679–688 (2025).

    Google Scholar 

  • Riotto, E. et al. Accuracy of autonomous artificial intelligence-based diabetic retinopathy screening in real-life clinical practice. J. Clin. Med. 13, 4776 (2024).

    Google Scholar 

  • Šín, M. et al. Comparison of the Aireen system with telemedicine evaluation by an ophthalmologist – a real-world study. Clin. Ophthalmol. 19, 957–964 (2025).

    Google Scholar 

  • Taylor, J. R. et al. Real-world evaluation of RetCAD deep-learning system for the detection of referable diabetic retinopathy and age-related macular degeneration. Clin. Exp. Optomet. 1-6 (2024).

  • Yao, L. et al. Screening and evaluation of diabetic retinopathy via a deep learning network model: a prospective study. World J. Diab. 15, 2302–2310 (2024).

    Google Scholar 

  • Chia, M. A. et al. Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians. Br. J. Ophthalmol. 108, 268–273 (2024).

    Google Scholar 

  • Dow, E. R. et al. AI-human hybrid workflow enhances teleophthalmology for the detection of diabetic retinopathy. Ophthalmol. Sci. 3, 100330 (2023).

    Google Scholar 

  • Grzybowski, A. et al. Diagnostic accuracy of automated diabetic retinopathy image assessment softwares: IDx-DR and medios artificial intelligence. Ophthalmic Res. 66, 1286–1292 (2023).

    Google Scholar 

  • He, S. et al. Cross-camera performance of deep learning algorithms to diagnose common ophthalmic diseases: a comparative study highlighting feasibility to portable fundus camera use. Curr. Eye Res. 48, 857–863 (2023).

    Google Scholar 

  • Kemp, O. et al. Real-world evaluation of smartphone-based artificial intelligence to screen for diabetic retinopathy in Dominica: a clinical validation study. BMJ Open Ophthalmol. 8, e001491 (2023).

    Google Scholar 

  • Lupidi, M. et al. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. Acta Diabetolog. 60, 1083–1088 (2023).

    Google Scholar 

  • Meredith, S. et al. “Performance of an artificial intelligence automated system for diabetic eye screening in a large English population.” Diabetic Med. 40, e15055 (2023).

  • Fleming, A. D. et al. Deep learning detection of diabetic retinopathy in Scotland’s diabetic eye screening programme. Br. J. Ophthalmol. 108, 984–988 (2024).

    Google Scholar 

  • Salongcay, R. P. et al. Accuracy of integrated artificial intelligence grading using handheld retinal imaging in a Community Diabetic Eye Screening Program. Ophthalmol. Sci. 4, 100457 (2023).

    Google Scholar 

  • Vought, R. et al. EyeArt artificial intelligence analysis of diabetic retinopathy in retinal screening events. Int. Ophthalmol. 43, 4851–4859 (2023).

    Google Scholar 

  • Arenas-Cavalli, J. T. et al. Clinical validation of an artificial intelligence-based diabetic retinopathy screening tool for a national health system. Eye 36, 78–85 (2022).

    Google Scholar 

  • Dong, X. et al. Evaluation of an artificial intelligence system for the detection of diabetic retinopathy in chinese community healthcare centers. Front. Med. 9, 883462 (2022).

  • Han, R. et al. Validating automated eye disease screening AI algorithm in community and in-hospital scenarios. Front. Public Health 10, 944967 (2022).

    Google Scholar 

  • Hao, S. et al. Clinical evaluation of AI-assisted screening for diabetic retinopathy in rural areas of midwest China. PloS One 17, e0275983 (2022).

    Google Scholar 

  • Li, F. et al. A multicenter clinical study of the automated fundus screening algorithm. Transl. Vis. Sci. Technol. 11, 22 (2022).

    Google Scholar 

  • Mehra, A. A. et al. Diabetic retinopathy telemedicine outcomes with artificial intelligence-based image analysis, reflex dilation, and image overread. Am. J. Ophthalmol. 244, 125–132 (2022).

    Google Scholar 

  • Mokhashi, N. et al. A comparison of artificial intelligence and human diabetic retinal image interpretation in an urban health system. J. Diab. Sci. Technol. 16, 1003–1007 (2022).

    Google Scholar 

  • Paul, S. et al. Einsatz von künstlicher Intelligenz im Screening auf diabetische Retinopathie an einer diabetologischen Schwerpunktklinik” [Use of artificial intelligence in screening for diabetic retinopathy at a tertiary diabetes center]. Die Ophthalmol. 119, 705–713 (2022).

    Google Scholar 

  • Pei, X. et al. Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients. Diab. Res.Clin. Pract. 184, 109190 (2022).

    Google Scholar 

  • Rao, D. P. et al. Towards a device agnostic AI for diabetic retinopathy screening: an external validation study. Clin. Ophthalmol. 16, 2659–2667 (2022).

    Google Scholar 

  • Nunez do Rio, J. M. et al. Evaluating a deep learning diabetic retinopathy grading system developed on mydriatic retinal images when applied to non-mydriatic community screening. J. Clin. Med. 11, 614 (2022).

    Google Scholar 

  • Ruamviboonsuk, P. et al. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet Digit. Health 4, e235–e244 (2022).

    Google Scholar 

  • Skevas, C. et al. Simultaneous screening and classification of diabetic retinopathy and age-related macular degeneration based on fundus photos—a prospective analysis of the RetCAD system. Int. J. Ophthalmol. 15, 1985–1993 (2022).

    Google Scholar 

  • Sedova, A. et al. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images. Eye 36, 510–516 (2022).

    Google Scholar 

  • Tsai, M.-J. et al. Cross-camera external validation for artificial intelligence software in diagnosis of diabetic retinopathy. J. Diab. Res. 2022, 5779276 (2022).

    Google Scholar 

  • Yang, Y. et al. Performance of the AIDR Screening system in detecting diabetic retinopathy in the fundus photographs of Chinese patients: a prospective, multicenter, clinical study. Ann. Transl. Med. 10, 1088 (2022).

    Google Scholar 

  • Bhuiyan et al. Combined automated screening for age-related macular degeneration and diabetic retinopathy in primary care settings. Ann. Eye Sci. 6, 12 (2021).

    Google Scholar 

  • Grzybowski, A. & Brona, P. Analysis and comparison of two artificial intelligence diabetic retinopathy screening algorithms in a pilot study: IDx-DR and retinalyze. J. Clin. Med. 10, 2352 (2021).

    Google Scholar 

  • Heydon, P. et al. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br. J. Ophthalmol. 105, 723–728 (2021).

    Google Scholar 

  • Jain, A. et al. Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy. Indian J. Ophthalmol. 69, 3150–3154 (2021).

    Google Scholar 

  • Kim, T. N. et al. Comparison of automated and expert human grading of diabetic retinopathy using smartphone-based retinal photography. Eye 35, 334–342 (2021).

    Google Scholar 

  • Li, N. et al. A stratified analysis of a deep learning algorithm in the diagnosis of diabetic retinopathy in a real-world study. J. Diab. 14, 111–120 (2022).

    Google Scholar 

  • Li, Y.-H. et al. The clinical influence after implementation of convolutional neural network-based software for diabetic retinopathy detection in the primary care setting. Life 11, 200 (2021).

    Google Scholar 

  • Lin, D. et al. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. Lancet Digit. health 3, e486–e495 (2021).

    Google Scholar 

  • Ming, S. et al. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Int. Ophthalmol. 41, 1291–1299 (2021).

    Google Scholar 

  • Shah, A. et al. Validation of automated screening for referable diabetic retinopathy with an autonomous diagnostic artificial intelligence system in a Spanish population. J. Diab. Sci. Technol. 15, 655–663 (2021).

    Google Scholar 

  • Wintergerst, M. W. M. et al. Telemedical Diabetic Retinopathy Screening in a Primary Care Setting: Quality of Retinal Photographs and Accuracy of Automated Image Analysis. Ophthalmic Epidemiol. 29, 286–295 (2022).

    Google Scholar 

  • González-Gonzalo, C. et al. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol. 98, 368–377 (2020).

    Google Scholar 

  • He, J. et al. Artificial intelligence-based screening for diabetic retinopathy at community hospital. Eye 34, 572–576 (2020).

    Google Scholar 

  • Hsieh, Y.-T. et al. Application of deep learning image assessment software VeriSee™ for diabetic retinopathy screening. J. Formos. Med. Assoc. = Taiwan yi zhi 120, 165–171 (2021).

    Google Scholar 

  • Li, Z. X. et al. Zhonghua Yi Xue Za Zhi 100, 3835–3840 (2020).

    Google Scholar 

  • Olvera-Barrios, A. et al. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images. Br. J. Ophthalmol. 105, 265–270 (2021).

    Google Scholar 

  • Sarao, V. et al. Automated diabetic retinopathy detection with two different retinal imaging devices using artificial intelligence: a comparison study. Graefe’s. Arch. Clin. Exp. Ophthalmol. = Albrecht Graefes Arch. Klinische Exp. Ophthalmol. 258, 2647–2654 (2020).

    Google Scholar 

  • Sosale, B. et al. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian J. Ophthalmol. 68, 391–395 (2020).

    Google Scholar 

  • Sosale, B. et al. Simple, Mobile-based Artificial Intelligence Algorithm in the detection of Diabetic Retinopathy (SMART) study. BMJ Open Diab. Res. Care 8, e000892 (2020).

    Google Scholar 

  • Zhang, Y. et al. Artificial intelligence-enabled screening for diabetic retinopathy: a real-world, multicenter and prospective study. BMJ Open Diab. Res. Care 8, e001596 (2020).

    Google Scholar 

  • Gulshan, V. et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol. 137, 987–993 (2019).

    Google Scholar 

  • Natarajan, S. et al. Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol. 137, 1182–1188 (2019).

    Google Scholar 

  • Quellec, G. et al. Instant Automatic Diagnosis of Diabetic Retinopathy (Cornell University, 2019).

  • Raumviboonsuk, P. et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digit. Med. 2, 25 (2019).

    Google Scholar 

  • Verbraak, F. D. et al. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting. Diab. Care 42, 651–656 (2019).

    Google Scholar 

  • Krause, J. et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125, 1264–1272 (2018).

    Google Scholar 

  • Rajalakshmi, R. et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 32, 1138–1144 (2018).

    Google Scholar 

  • van der Heijden, A. A. et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol. 96, 63–68 (2018).

    Google Scholar 

  • Tufail, A. et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology 124, 343–351 (2017).

    Google Scholar 

  • Abràmoff, M. D. et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig. Ophthalmol. Vis. Sci. 57, 5200–5206 (2016).

    Google Scholar 

  • Keel, S. et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci. Rep. 8, 4330 (2018).

    Google Scholar 

  • Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327, 557–560 (2003).

    Google Scholar 

  • Rutter, C. M. & Gatsonis, C. A. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat. Med. 20, 2865–2884 (2001).

    Google Scholar 

  • Macdonald, T. et al. Generating evidence to support the role of AI in diabetic eye screening: considerations from the UK National Screening Committee. Lancet Digit. Health S2589-750000271-1 (2025).

  • Li, Z. et al. Deep-learning-based detection of diabetic retinopathy: a systematic review and meta-analysis. PLoS One 16, e0250033 (2021).

    Google Scholar 

  • Wolf, R. M. et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: the ACCESS randomized control trial. Nat. Commun. 15, 421 (2024).

  • Centers for Medicare & Medicaid Services. HCPCS/CPT Code 92229 – Imaging of retina for detection or monitoring of disease; point-of-care automated analysis. Final Rule CY (2021).

  • Wang, T.W., Luo, W., Tu, Y. Chou, Y., & Wu, Y. (2025). Diagnostic accuracy of regulatory-approved deep-learning systems for fundus-based detection of diabetic retinopathy—a systematic review and meta-analysis. https://doi.org/10.37766/inplasy2025.5.0099.

  • McInnes, M. D. F. et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319, 388–396 (2018).

    Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, b2535 (2009).

    Google Scholar 

  • World Bank. World Bank country classifications by income level for 2024–2025. World Bank Blogs. https://blogs.worldbank.org/opendata/world-bank-country-classifications-by-income-level-for-2024-2025.

  • Whiting, P. F. et al. QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155, 529–36 (2011).

    Google Scholar 

  • International Council of Ophthalmology (ICO). ICO Guidelines for Diabetic Eye Care. Updated 2017.

  • Deeks, J. J., Macaskill, P. & Irwig, L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J. Clin. Epidemiol. 58, 882–893 (2005).

    Google Scholar 

  • colind88

    Back To Top